Year:
2018
Publication:
Rendiconti Lincei - Matematica e Applicazioni
Abstract:
We examine the question whether random set attractors for continuous-time random dynamical systems on a connected state space are connected. In the deterministic case, these attractors are known to be connected. In the probabilistic setup, however, connectedness has only been shown under stronger connectedness assumptions on the state space. Under a weak continuity condition on the random dynamical system we prove connectedness of the pullback attractor on a connected space. Additionally, we provide an example of a weak random set attractor of a random dynamical system with even more restrictive continuity assumptions on an even path-connected space which even attracts all bounded sets and which is not connected.