<-- Zurück

Variational characterization of free energy: Theory and algorithms

von Carsten Hartmann, Lorenz Richter, Christof Schütte, Wei Zhang

Jahr:

2017

Publikation:

Entropy, Volume 19, Issue 11

Abstrakt:

The article surveys and extends variational formulations of the thermodynamic free energy and discusses their information-theoretic content from the perspective of mathematical statistics. We revisit the well-known Jarzynski equality for nonequilibrium free energy sampling within the framework of importance sampling and Girsanov change-of-measure transformations.

Link:

Read the paper

Additional Information


Brief introduction of the dida co-author(s) and relevance for dida's ML developments.

Dr. Lorenz Richter

Aus der Stochastik und Numerik kommend (FU Berlin), beschäftigt sich der Mathematiker seit einigen Jahren mit Deep-Learning-Algorithmen. Neben seinem Faible für die Theorie hat er in den letzten 10 Jahren diverse Data Science-Probleme praktisch gelöst. Lorenz leitet das Machine-Learning-Team.