Variational characterization of free energy: Theory and algorithms
von Carsten Hartmann, Lorenz Richter, Christof Schütte, Wei Zhang
Jahr:
2017
Publikation:
Entropy, Volume 19, Issue 11
Abstrakt:
The article surveys and extends variational formulations of the thermodynamic free energy and discusses their information-theoretic content from the perspective of mathematical statistics. We revisit the well-known Jarzynski equality for nonequilibrium free energy sampling within the framework of importance sampling and Girsanov change-of-measure transformations.
Link:
Read the paperAdditional Information
Brief introduction of the dida co-author(s) and relevance for dida's ML developments.
Dr. Lorenz Richter
Aus der Stochastik und Numerik kommend (FU Berlin), beschäftigt sich der Mathematiker seit einigen Jahren mit Deep-Learning-Algorithmen. Neben seinem Faible für die Theorie hat er in den letzten 10 Jahren diverse Data Science-Probleme praktisch gelöst. Lorenz leitet das Machine-Learning-Team.