<-- Zurück

The Computational Complexity of Understanding Binary Classifier Decisions

von Stephan Wäldchen, Jan Macdonald, Sascha Hauch, Gitta Kutyniok

Jahr:

2021

Publikation:

JAIR, Vol. 70

Abstrakt:

For a d-ary Boolean function Φ: {0, 1}d → {0, 1} and an assignment to its variables x = (x1, x2, . . . , xd) we consider the problem of finding those subsets of the variables that are sufficient to determine the function value with a given probability δ. This is motivated by the task of interpreting predictions of binary classifiers described as Boolean circuits, which can be seen as special cases of neural networks.

Link:

Read the paper

Additional Information


Brief introduction of the dida co-author(s) and relevance for dida's ML developments.

Dr. Jan Macdonald

Während seines Mathematikstudiums (TU Berlin) konzentrierte sich Jan auf angewandte Themen der Optimierung, Funktionalanalysis und Bildverarbeitung. Im Rahmen seiner Promotion (TU Berlin) untersuchte er das Zusammenspiel von theoretischer und empirischer Forschung zu neuronalen Netzen. Dies resultierte in seiner Dissertation, in der die Zuverlässigkeit von Deep Learning für Bildverarbeitungs- und Computer-Vision-Anwendungen in Bezug auf Interpretierbarkeit, Robustheit und Genauigkeit untersucht wird. Bei dida arbeitet er als Machine Learning Researcher an der Schnittstelle von wissenschaftlicher Forschung und Softwareentwicklung.