Noncommutative differential K-theory
von Byungdo Park, Arthur J. Parzygnat, Corbett Redden, Augusto Stoffel
Jahr:
2021
Publikation:
Journal of Geometry and Physics, Volume 174, article id. 104446.
Abstrakt:
We introduce a differential extension of algebraic K-theory of an algebra using Karoubi's Chern character. In doing so, we develop a necessary theory of secondary transgression forms as well as a differential refinement of the smooth Serre--Swan correspondence. Our construction subsumes the differential K-theory of a smooth manifold when the algebra is complex-valued smooth functions.
Link:
Read the paperAdditional Information
Brief introduction of the dida co-author(s) and relevance for dida's ML developments.
Dr. Augusto Stoffel
Augusto studierte Informatik in Brasilien und promovierte in Mathematik (University of Notre Dame, USA) über die Rolle der algebraischen Topologie als Grundlage der Quantenfeldtheorie. Bei der dida arbeitet er an NLP-Anwendungen, von der Forschung bis zur Backend-Entwicklung.