<-- Zurück

Near-Exact Recovery for Tomographic Inverse Problems via Deep Learning

von Martin Genzel, Ingo Gühring, Jan Macdonald, Maximilian März

Jahr:

2022

Publikation:

PMLR 162:7368-7381

Abstrakt:

This work is concerned with the following fundamental question in scientific machine learning: Can deep-learning-based methods solve noise-free inverse problems to near-perfect accuracy? Positive evidence is provided for the first time, focusing on a prototypical computed tomography (CT) setup.

Link:

Read the paper

Additional Information


Brief introduction of the dida co-author(s) and relevance for dida's ML developments.

Dr. Jan Macdonald

Während seines Mathematikstudiums (TU Berlin) konzentrierte sich Jan auf angewandte Themen der Optimierung, Funktionalanalysis und Bildverarbeitung. Im Rahmen seiner Promotion (TU Berlin) untersuchte er das Zusammenspiel von theoretischer und empirischer Forschung zu neuronalen Netzen. Dies resultierte in seiner Dissertation, in der die Zuverlässigkeit von Deep Learning für Bildverarbeitungs- und Computer-Vision-Anwendungen in Bezug auf Interpretierbarkeit, Robustheit und Genauigkeit untersucht wird. Bei dida arbeitet er als Machine Learning Researcher an der Schnittstelle von wissenschaftlicher Forschung und Softwareentwicklung.